对数均值不等式证明方法_对数均值不等式证明 播资讯

1、证明过程如下:设f(x)=e^(x-1)– x,f’(x)=e^(x-1)-1;f”(x)=e^(x-1)。

2、f(1)=0,f’(1)=0,f”(x)>0,所以f(x)在x=1有绝对的最低值。

3、f(x)=e^(x-1)-x≥f(1)=0所以e^(x-1) ≥ x设xi>0,i=1,n。


【资料图】

4、算术平均值为a=(x1+x2+x3+…+xn)/n,a>0。

5、x/a ≤ e^(x/a-1)(x1/a)*(x2/a)*(x3/a)*…*(xn/a ) ≤ e^(x1/a-1) e^(x2/a-1)e^(x3/a-1)… e^(xn/a-1)=e^(x1/a-1+x2/a-1+x3/a-1+…xn/a-1)=e^[(x1+x2+x3+…+xn)/a-n]=e^[na/a-n]=e^0=1所以(x1/a)*(x2/a)*(x3/a)*…*(xn/a )=(x1*x2*x3*…*xn)/a^n ≤ 1即(x1*x2*x3*…*xn) ≤ a^n(x1*x2*x3*…*xn)^(1/n) ≤ a ,即算术平均数大于等于几何平均数。

6、扩展资料算数平均数特点算术平均数是一个良好的集中量数,具有反应灵敏、确定严密、简明易解、计算简单、适合进一步演算和较小受抽样变化的影响等优点。

7、2、算术平均数易受极端数据的影响,这是因为平均数反应灵敏,每个数据的或大或小的变化都会影响到最终结果。

8、几何平均数特点几何平均数受极端值的影响较算术平均数小。

9、2、如果变量值有负值,计算出的几何平均数就会成为负数或虚数。

10、3、它仅适用于具有等比或近似等比关系的数据。

11、4、几何平均数的对数是各变量值对数的算术平均数。

本文到此分享完毕,希望对大家有所帮助。

关键词:

    为你推荐

    揭秘!神舟十三号载人飞船着陆的最后一段“路程”

    2022年4月16日,在神舟十三号载人飞船着陆的最后一段路程,有一个位于返回舱底部的刹车指令员,正在沉着地测算着返回舱的速度和距地面高度

    来源: 22-05-23

    揭秘!神舟十三号载人飞船着陆的最后一段“路程”

    2022年4月16日,在神舟十三号载人飞船着陆的最后一段路程,有一个位于返回舱底部的刹车指令员,正在沉着地测算着返回舱的速度和距地面高度

    来源: 22-05-23

    揭秘!神舟十三号载人飞船着陆的最后一段“路程”

    2022年4月16日,在神舟十三号载人飞船着陆的最后一段路程,有一个位于返回舱底部的刹车指令员,正在沉着地测算着返回舱的速度和距地面高度

    来源: 22-05-23

    太空中最大的“相机”!中国空间站望远镜明年发射

    预计于2023年发射的中国空间站望远镜非常有气势,大小相当于一辆大客车,立起来有三层楼那么高。它的口径为两米,与美国哈勃太空望远镜的口

    来源: 22-05-23

    数字化时代 用AI技术为“智慧养老”护航!

    现在电视都变得智能了,想看什么电视剧就能对它喊什么,‘播放《奔跑吧》’,不用再像原先每天要定时守着,还能快进和后退,不想

    来源: 22-05-23
    返回顶部